Künstliche Intelligenz Vier Gründe für mehr Machine Learning in Industriebetrieben im Jahr 2023
Anbieter zum Thema
Die Einsatzzwecke für KI-Anwendungen wie das Machine Learning werden auch in der Industrie immer vielfältiger. Warum sich Unternehmen auch 2023 immer ernsthafter für Machine Learning interessieren werden, lesen Sie hier.

Machine Learning wurde in der Industrie in der Vergangenheit regelrecht gehypt. Die Realität ist aber bislang hinter den Erwartungen zurückgeblieben. Die Technologie kommt zwar in der Produktion durchaus zum Einsatz, verbreitet sich dort aber nur stark verzögert. Nach unserer Ansicht wird sich das nun ändern. Vor allem aus den nachfolgenden vier Gründen werden Industrieunternehmen im Jahr 2023 verstärkt auf Machine Learning setzen.
1. Volatile Umweltfaktoren
Die weltweiten Krisen führen zu Lieferverzögerungen bei Eingangsmaterialien und erschweren Absatzprognosen. Wenn Industriebetriebe alle Einflussfaktoren berücksichtigen möchten, wird ihre Unternehmensplanung hochkomplex. Diese Komplexität lässt sich mit Hilfe von Machine-Learning-Systemen beherrschen. Sie können Unternehmen maßgeblich dabei helfen, Entwicklungen zu prognostizieren und dabei verschiedenste Szenarien zu berücksichtigen – und so eine zuverlässige Lieferung an die Endkunden zu gewährleisten.
2. Individualisierte Produktion
Die Chargen von Industrieunternehmen werden immer kleiner, weil ihre Kunden zunehmend individuelle Produktlösungen erwarten. Um dieser Entwicklung gerecht zu werden, müssen sie die Leistungsfähigkeit ihrer Herstellungsprozesse erhöhen. Deshalb werden Industriebetriebe verstärkt Predictive-Maintenance- und Predictive-Quality-Anwendungen implementieren. Sie ermöglichen es, durch rechtzeitiges Eingreifen ungeplante Stillstände und die Entstehung von Ausschuss zu vermeiden und dadurch die Gesamtanlageneffektivität, auch Overall Equipment Effectiveness genannt, zu optimieren.
3. Energieknappheit und ESG
Die derzeitige Energieknappheit könnte auf absehbare Zeit der Normalzustand bleiben. Industriebetriebe sind deshalb gezwungen, ihre Produktionen so energieeffizient wie möglich zu gestalten. Mit Machine-Learning-Systemen können sie den Energieverbrauch online messen, analysieren und bei der Produktionsplanung berücksichtigen. Die Erfassung der Energiedaten ermöglicht es ihnen zudem, die steigenden ESG-Anforderungen zu erfüllen. Sie können etwa ihre Produkte mit Umwelt- und Energielabels ausstatten oder durch die Historisierung der Daten eine ESG-Konformität jederzeit rückverfolgbar nachweisen.
:quality(80)/images.vogel.de/vogelonline/bdb/1940200/1940265/original.jpg)
Künstliche Intelligenz
Reinforcement Learning in der Produktion: erste Schritte für KMU
4. Demografischer Wandel
Die Belegschaften altern, viele Mitarbeiterinnen und Mitarbeiter gehen demnächst in Rente und können wegen des Fachkräftemangels nicht adäquat ersetzt werden. Industriebetrieben geht damit wertvolles Know-how für Maschinenführung verloren. Bei vielen Herstellungsprozessen unterliegen Einflussfaktoren wie Materialien starken Schwankungen, die sich nicht durch eine Rezeptur abfangen lassen.
Deshalb nivellieren die Maschinenführer diese Schwankungen durch Prozesseingriffe, die auf jahrelanger Erfahrung basieren. Damit dieses Know-how nicht verloren geht, werden Unternehmen versuchen, es direkt auf die Maschinen zu bringen. Dafür eignen sich am besten spezielle Machine-Learning-Ansätze auf Basis von Ontologien wie etwa Bayes’sche Netze.
Bereits gelegte Grundlagen nutzen
Auf viele Herausforderungen von Industriebetrieben kann Machine-Learning die beste Antwort geben. Die Voraussetzungen dafür sind günstig, denn in den vergangenen Jahren haben viele Unternehmen bereits daran gearbeitet, ihre Maschinen durch digitalen Retrofit mit Sensoren zur Datenerfassung auszustatten, die Maschinen zu vernetzen und die Daten in die Cloud zu bringen. Jetzt können sie den nächsten Schritt gehen und ihre Daten mit Machine-Learning-Algorithmen gewinnbringend analysieren.
* Marc Tesch ist Inhaber und CEO von Lean-BI.
(ID:48958886)