Suchen

Smart auch ohne smarte Technik

Multifunktionale Fassade aus dem 3D-Drucker

| Redakteur: Jürgen Schreier

Architekten der TU München haben ein multifunktionales und lichtdurchlässiges Fassadenelement entwickelt, das sich per 3D-Druck produzieren lässt. Funktionen wie Lüftung, Dämmung oder Verschattung sind bereits integriert, was Sensorik oder Steuerungstechnik überflüssig macht.

Firmen zum Thema

Designstudie: Der Kunststoff umhüllt das Bauwerk wie ein luftiges, weiches Tuch.
Designstudie: Der Kunststoff umhüllt das Bauwerk wie ein luftiges, weiches Tuch.
( Bild: TU München )

Das 60 Zentimeter breite und einen Meter hohe Muster-Bauteil aus Kunststoff ist schneeweiß und wirkt sehr filigran. Licht scheint diffus durch die Oberfläche. Trotzdem kann dieses Material ein Gebäude vor Wind und Wetter schützen. Bei dem Bauteil handelt es sich um ein funktionsintegriertes Fassadenelement aus dem 3D-Drucker. Moritz Mungenast, wissenschaftlicher Mitarbeiter an der Professur für Entwerfen und Gebäudehülle der TUM, hat das Projekt initiiert und es gemeinsam mit seinem Team umgesetzt.

„Tatsächlich ist das Fassadenelement nicht nur sehr stabil, sondern auch lichtdurchlässig und multifunktional“, erläutert Mungenast. Zellen im Inneren sorgen für Stabilität und schaffen gleichzeitig luftgefüllte Hohlräume für eine optimale Dämmung. Wölbungen des Materials spenden Schatten. Eingelagerte, dünne Röhren lassen die Luft von einer Seite zur anderen zirkulieren, was eine optimale Belüftung gewährleistet. Die mikrostrukturierte Oberfläche sorgt für optimale Akustik. All diese Funktionen sind skalierbar und lassen sich ohne extra Kosten individuell an verschiedene Anforderungen anpassen.

Fluid Morphology - das Geheimnis der Welle

„Der 3D-Druck gibt uns nie dagewesene Gestaltungsmöglichkeiten. Wir können diese Freiheit nutzen, um Funktionen wie Lüftung, Verschattung und Klimatisierung zu integrieren. Das macht teure Sensoren, Steuerungsprogramme und Motoren, die man bisher benötigt, überflüssig“, erklärt der Architekt.

Die Designstudie, die sein Team erstellt hat, zeigt, wie ein Gebäude mit der neuen Lowtech-Fassade aussehen könnte: Kunststoff umhüllt das Bauwerk wie ein luftiges, weiches Tuch. Die Wirkung wird verstärkt durch die gewellte Oberfläche, die dem Fassaden-Konzept seinen Namen gab: Fluid Morphology.

Wie Wasserwellen, die entstehen, wenn mehrere Steine in einen windstillen See geworfen werden, überlagern sich die Strukturen: Die Fassade hat große Ausbuchtungen, tritt an einigen Stellen vor, an anderen zurück. Sie ist zudem nicht überall gleich dick. Die Variationen erzeugen ein weiteres Wellenmuster.

„Design und Funktion hängen eng zusammen“, weiß Mungenast. „Wir können beispielsweise die Wellen so anordnen, dass sie die Fassade im Sommer vor Hitze schützten und im Winter möglichst viel Licht durchlassen.“

Sensorik sammelt für Langzeittest Daten unter Realbedingungen

Doch wie viel Licht dringt wann und wo durch die neuen, gedruckten Fassaden-Elemente? Wie gut halten sie UV-Strahlung, Windbelastung, Regen und Schnee stand? Wie effizient ist die Dämmung? Eine Langzeitmessung eines kompletten Fassadenelements von 1,6 m x 2,8 m Größe auf der Solarstation, einem Versuchsstand auf dem Hauptgebäude der TU München in der Münchner Arcisstraße, soll Antworten liefern. Ein Jahr lang werden Sensoren Daten sammeln, mit deren Hilfe die Architekten dann ihr Design noch verbessern wollen, bevor sie einen weiteren Prototyp aus Polycarbonat, einem zugelassenen Fassadenmaterial, fertigen.

Zukünftige Einsatzmöglichkeiten sieht Mungenast zunächst bei Sonderbauten wie Museen, Bibliotheken, Einkaufzentren oder Versammlungsräumen: „Spezielle Lösungen sind hier besonders gefragt, und es spielt keine Rolle, dass die Kunststofffassaden aus dem 3D-Drucker nicht gänzlich transparent sind wie Glasscheiben, sondern transluzent. Das durchscheinende Licht erzeugt eine ganz eigene, durchaus reizvolle Atmosphäre.“

Unterstützt werden die Forscher vom Research Lab der Fakultät für Architektur der TU München sowie den 3D-Druckerherstellern Delta Tower sowie Picco’s 3D World.

Dieser Beitrag ist urheberrechtlich geschützt. Sie wollen ihn für Ihre Zwecke verwenden? Infos finden Sie unter www.mycontentfactory.de (ID: 44854529)

NCCR Digital Fabrication, 2017; ETH Zürich; Multiphoton Optics; ; TU München; ©strichfiguren.de - stock.adobe.com; gemeinfrei - Pete Linforth/Pixabay; Moleskine; gemeinfrei; Siemens Healthineers; Palo Alto Networks