Suchen

Predictive Maintenance KI-System erkennt auch unbekannte Fehler an Maschinen

| Redakteur: Jürgen Schreier

Vorausschauende Wartung basiert auf Musterkennung. Allerdings lassen sich damit nur "bekannte" Ereignisse detektieren. Forscher der Universität des Saarlandes haben nun ein KI-basiertes Wartungssystem entwickelt, das auch bisher unbekannte Fehler erkennt und daraus lernt.

Firma zum Thema

Steffen Klein (l.) und Christopher Schnur aus dem Team von Professor Andreas Schütze forschen an dem neuen Wartungssystem, das Sensoren an Industrieanlagen smart macht.
Steffen Klein (l.) und Christopher Schnur aus dem Team von Professor Andreas Schütze forschen an dem neuen Wartungssystem, das Sensoren an Industrieanlagen smart macht.
(Bild: Oliver Dietze)

Ein neues Wartungssystem macht Sensoren an Industrieanlagen smart: Das Team von Professor Andreas Schütze an der Universität des Saarlandes verknüpft künstliche Intelligenz mit Sensoren, die Zustandsdaten von Maschinen sammeln. Ihr System erkennt Schadens-, Verschleiß- oder Fehlerzustände und - das gab es bisher nicht - auch unbekannte Vorfälle. Es lernt aus ihnen und ordnet sie den Ursachen zu. Auf diese Weise können gerade auch kleine und mittlere Unternehmen Maschinenwartung und Instandhaltung automatisieren, vorausschauend planen und böse Überraschungen vermeiden.

Unzählige Sensoren sammeln heute massenhaft Daten von Industriemaschinen. Winzige Temperaturschwankungen, minimale Schwingungsänderungen, feinste Veränderungen der Messwerte kündigen weit im Vorfeld an, ob z.B. ein Bauteil ermüdet. Problem: Man muss diese "zarten Andeutungen" in der von den Sensoren generierten Datenflut erkennen. „Ein einzelner Sensor kann in wenigen Tagen ein Terabyte Rohdaten liefern“, verdeutlicht Professor Andreas Schütze, Messtechnik-Experte von der Universität des Saarlandes. Zum anderen gilt es, die Vorzeichen in den Daten richtig zu deuten.

Novelty Detection wird lernfähig

Schütze und sein Team haben mit Partnern aus Industrie und Wissenschaft ein System entwickelt, das die richtigen Signaldaten aus der Datenfülle herauszieht. „Es ordnet die Signalmuster selbstständig Schadens-, Verschleiß- oder Fehlerzuständen zu und macht so den Zustand einer Anlage permanent sichtbar“, erklärt Schütze.

Professor Andreas Schütze
Professor Andreas Schütze
(Bild: Oliver Dietze)

Dafür vergleicht das Programm im laufenden Betrieb die Sensordaten unablässig mit normalen Werten und typischen Mustern beginnender Fehlfunktionen und Schäden. Weichen die Muster ab, informiert das System, wann ein Schaden droht, und was zu tun ist. Die Forscherinnen und Forscher haben an der Universität und am Zentrum für Mechatronik und Automatisierungstechnik Zema einen ganzen Baukasten aus Hard- und Software-Modulen entwickelt, mit dem das System für unterschiedliche Industrieanlagen individuell zusammengestellt werden kann.

Allerdings konnten KI-Systeme neuen Ereignisse nicht auswerten. „Künstliche Intelligenz funktioniert durch Mustererkennung. Passiert etwas völlig Neues, kennt also das System ein Muster nicht, stößt es bislang an seine Grenzen. Wir entwickeln unser Programm so weiter, dass es erkennt: ´So etwas hatten wir noch nicht´, und dann den Menschen informiert“, erläutert Andreas Schütze. Im Fachjargon nennt sich dies Novelty Detection. Kommt solch ein Ereignis öfter vor, ordnet das Programm mit neuen Daten diesen unbekannten Fehlern Ursachen und Folgen zu.

Erkenntnisse können mit weiteren KI-Funktionen verknüpft werden

In mehreren Forschungsprojekten hatte Schützes Arbeitsgruppe für ihr System eine Vielzahl an Signalmustern aus der Masse von Messdaten herausgefiltert, die mit Veränderungen und Schadenszuständen von Maschinen in Zusammenhang stehen. Sie erstellten mathematische Modelle für Fehlergrade und lernten ihr System mit diesen an. Das Programm lernt jetzt mit Methoden maschinellen Lernens automatisch dazu und erkennt Abweichungen von selbst.

„Die Algorithmen integrieren auch neu gesammelte Daten in ihre Auswertungen. Dadurch wird es auch möglich, Anomalien zu erkennen und zu interpretieren“, erklärt Tizian Schneider, der im Rahmen seiner Doktorarbeit an dem System forscht.

Diese Erkenntnisse können mit weiteren KI-Funktionen verknüpft werden, wie mit automatischer Bestellung von Ersatzteilen. Auf diese Weise wird die Instandhaltung großer und auch schwer erreichbarer Anlagen planbar. Auch gibt das System seine Informationen in verständlicher Form an menschliche Instandhalter weiter. Damit sie die Zahlen richtig deuten, erforschte das Team auch, die Ergebnisse automatisch für sie zu übersetzen. „Das System bricht die Information herunter auf das, was sie wissen müssen und gibt dies leicht verständlich nach außen weiter“, erklärt Tizian Schneider.

Forscher entwickeln KI-basiertes Assistenzsystem für KMU

Jetzt will Schützes Team die neue Technik vor allem auch bei kleinen und mittelständischen Unternehmen bekannt machen: Im Mittelstand 4.0-Kompetenzzentrum Saarbrücken, das am Zema angesiedelt ist, und vom Bundeswirtschaftsministerium gefördert wird, bieten die Forscherinnen und Forscher Schulungen an. Derzeit entwickeln sie ein KI-basiertes Assistenzsystem speziell für kleine und mittlere Unternehmen. „Gerade der Mittelstand und auch kleinere Firmen können das System nutzen, um sich durch Digitalisierung wettbewerbsfähig zu machen“, erklärt Andreas Schütze.

(ID:46608121)