Kommentar

Das ‚I‘ in der KI weiterdenken

| Autor / Redakteur: Jim Tung* / Sebastian Human

Eine innovative Technologie alleine macht noch keinen Wettbewerbsvorteil – an einer durchdachten Einsatzstrategie führt kein Weg vorbei.
Eine innovative Technologie alleine macht noch keinen Wettbewerbsvorteil – an einer durchdachten Einsatzstrategie führt kein Weg vorbei. (Bild: gemeinfrei / Pixabay)

Im Rahmen seiner Keynote-Session Beyond the "I" in AI: Insight. Implementation. Integration. sprach Jim Tung, Chief Strategist bei MathWorks, auf der Matlab Expo am 2. Juli 2019 über Hürden bei der KI-Implementierung – und wie man diese hinter sich lassen kann.

Laut eines aktuellen Berichts des McKinsey Global Institute könnte Künstliche Intelligenz bis 2030 etwa 13 Billionen Dollar zur globalen Wirtschaftsleistung beitragen. Dies entspricht einem zusätzlichen jährlichen Wachstum von 1,2 Prozent des weltweiten BIP. Das wäre deutlich mehr als das Wachstum von 0,3 Prozent, das die Dampfmaschine mit sich brachte und damals den Beginn der industriellen Revolution einläutete.

Warum man mehr als nur Algorithmen bei der Entwicklung von KI berücksichtigen sollte

Trotz all dieses Potenzials steckt Künstliche Intelligenz noch in den Kinderschuhen. Beispiele von Unternehmen, die bei der Implementierung von KI für ihre Produkte und Dienstleistungen Herausforderungen gegenüberstehen, findet man genügend.

Es gibt viele Gründe, warum Unternehmen Schwierigkeiten mit der Nutzung von KI haben können. Grundsätzlich lässt sich sagen, dass sich zu viele Mitwirkende nur auf die KI-Algorithmen konzentrieren. Vielmehr gibt es drei weitere Anforderungen (oder drei weitere Is, wenn Sie so wollen), um mit künstlicher Intelligenz erfolgreich zu sein:

  • 1. Das Erkennen und Nutzen von Insights, also Einsichten und Wissen von Experten in Anwendungen, in denen KI verwendet werden soll.
  • 2. Tools zur Handhabung der Implementierungsdetails im gesamten Designworkflow, nicht nur im KI-Bereich.
  • 3. Die Sicherstellung einer effektiven Interaktion zwischen KI und anderen Systemen in ihrer Umgebung, einschließlich der Menschen.

Energieverbrauch in Gebäuden senken – ein Beispiel aus der Praxis

Zur Veranschaulichung dieser drei Anforderungen für die Erstellung einer erfolgreichen KI dient hier das Beispiel BuildingIQ. BuildingIQ verwendet MATLAB als Teil eines Cloud-basierten Systems für die Optimierung des Energieverbrauchs der HLK-Anlagen (Heizung, Lüftung, Klima) eines Gebäudes.

Das System streamt Daten aus externen Quellen, wie z.B. Wettervorhersagen und Prognosen für Energiepreise und nutzt diese Daten, um die Kosten für zugekaufte Energie mit einem Vorhersagehorizont von 12 Stunden immer wieder zu minimieren. Mit diesem Ansatz reduziert BuildingIQ die Energiekosten für Gebäude um 10 bis 25 Prozent.

Künstliche Intelligenz für mehr Qualität

Predictive Quality

Künstliche Intelligenz für mehr Qualität

14.06.19 - Mit einer neuen Anwendung namens Predictive Quality lässt sich die Qualität eines produzierten Artikels auf Basis von Prozessdaten vorhersagen. Künstliche Intelligenz sorgt dafür, dass das funktioniert. lesen

Insights – Expertenwissen einbringen

Kommen wir auf das erste ‚I‘ zurück: Insights, also Einblicke. Dabei geht es um das, was Ingenieure und Wissenschaftler in die KI einbringen, nicht das, was die KI ihnen bringt. Entwickler nutzen diese Insights bei der Auswahl von Daten, bei der Abwägung von Kompromissen und der Auswertung von Ergebnissen.

Bei der Entwicklung einer KI ist es wichtig, dass die Tools, die man dabei nutzt, diese Erkenntnisse als einen integralen Bestandteil der Lösung einbeziehen. BuildingIQ tut dies, indem es Daten herausfiltert, Pole und Nullstellen der Systemmodelle betrachtet und nichtlineare Optimierungen durchführt, sodass solide und sinnvolle Daten in den KI-Algorithmus eingehen und herauskommen.

Jim Tung, Chief Strategist bei MathWorks
Jim Tung, Chief Strategist bei MathWorks (Bild: MathWorks)

Implementierung – das gesamte System betrachten

Die Implementierung muss das gesamte System umfassen, nicht nur die KI-Komponente. Für Forscher bedeutet das, dass man Tests durchführen, Daten analysieren und Berichte verfassen muss. Baut man hingegen ein Auto, geht es mehr um die Erfassung von Anforderungen, Modellierung und Simulation sowie Verifizierung und Validierung. Erstellt man ein System zur Optimierung von Prozessen (wie bei BuildingIQ), geht es darum, alle notwendigen Daten zu streamen und zu konsolidieren, die KI mit Optimierungs- und Steuerungsfunktionen zu verbinden und damit die (HLK-) Steuerungssysteme zu betreiben.

Interaktion – Zusammenarbeit mit anderen Systemen und Menschen

Die dritte Anforderung - Interaktion - ist es, sicherzustellen, dass KI effektiv mit der Umgebung und komplexen menschlichen Arbeitsabläufen interagiert. Dies kann je nach Branche und Anwendung unterschiedliche Dinge bedeuten. Zum Beispiel kann KI in einem Auto Unfälle vermeiden, muss dies aber möglichst unmerklich tun, um sicherzustellen, dass die Fahrer trotz der automatisierten Eingriffe ein angenehmes Fahrerlebnis haben. In dem Beispiel für Heizung/Lüftung/Klima bietet BuildingIQ eine mobile App, die Informationen bereitstellt und die Flexibilität bietet, Betriebsparameter für mehr individuellen Komfort anzupassen.

KI muss im Gesamtzusammenhang betrachtet werden, um erfolgreich zu sein

Erfolgreiche KI-Anwendungen erfordern mehr als nur die Entwicklung und Nutzung intelligenter Algorithmen. Erkenntnisse von Fachleuten müssen eingebracht werden, die KI in einen kompletten Systementwicklungs-Workflow implementieren und sicherstellen, dass KI mit ihrer Umgebung vernünftig interagieren kann. Mit diesem Ansatz bringt die Anwendung von KI viele Vorteile für die Lösung verschiedenster Problemstellungen – auch für die Umsetzung eigener Projekte. Mit entsprechenden Tools, die Datenanalyse und Engineering kombinieren, ist es möglich, KI-basierte Systeme erfolgreich zu entwickeln.

Künstliche Intelligenz ist keine künstliche Dummheit

Kommentar

Künstliche Intelligenz ist keine künstliche Dummheit

16.06.19 - Der Hype um KI ist ungebrochen. Die Einsatzpotenziale maschineller Intelligenz scheinen schließlich so vielfältig, wie die menschliche Vorstellungskraft. Doch hier sollte man innehalten: macht der Einsatz innovativer Technologien um ihrer selbst willen wirklich Sinn? lesen

* Jim Tung arbeitet als Chief Strategist bei MathWorks.

Kommentare werden geladen....

Kommentar zu diesem Artikel abgeben

Der Kommentar wird durch einen Redakteur geprüft und in Kürze freigeschaltet.

Anonym mitdiskutieren oder einloggen Anmelden

Avatar
Zur Wahrung unserer Interessen speichern wir zusätzlich zu den o.g. Informationen die IP-Adresse. Dies dient ausschließlich dem Zweck, dass Sie als Urheber des Kommentars identifiziert werden können. Rechtliche Grundlage ist die Wahrung berechtigter Interessen gem. Art 6 Abs 1 lit. f) DSGVO.
  1. Avatar
    Avatar
    Bearbeitet von am
    Bearbeitet von am
    1. Avatar
      Avatar
      Bearbeitet von am
      Bearbeitet von am

Kommentare werden geladen....

Kommentar melden

Melden Sie diesen Kommentar, wenn dieser nicht den Richtlinien entspricht.

Kommentar Freigeben

Der untenstehende Text wird an den Kommentator gesendet, falls dieser eine Email-hinterlegt hat.

Freigabe entfernen

Der untenstehende Text wird an den Kommentator gesendet, falls dieser eine Email-hinterlegt hat.

copyright

Dieser Beitrag ist urheberrechtlich geschützt. Sie wollen ihn für Ihre Zwecke verwenden? Infos finden Sie unter www.mycontentfactory.de (ID: 46003126 / Technologie)